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Executive Summary 

The mobility of a nation’s people and goods is highly dependent on the health of its 

transportation system. However, the U.S. infrastructure has been repeatedly graded in poor 

condition (ASCE, 2017; Petroski 2016), and the budget available to either repair or replace these 

structures is limited (USDOT, 2017). Timely inspection and effective maintenance of bridges are 

crucial to avoid any issues that may have a negative impact on public mobility. However, current 

bridge inspection practices inhibit the collection and analysis of information about the status of 

bridges in an efficient and timely manner. This problem is further exacerbated by the large 

number of bridges in the U.S., and the limited number of inspectors available. For example, in 

Oregon, because there are more than 6,000 bridges and Oregon Department of Transportation 

(ODOT) employs only about 25 inspectors, a substantial number of subcontractors must be hired 

to carry out the work. 

 Current bridge inspection practice requires experienced inspectors to record relevant data 

manually using checklists and paper notes, which is subjective and inefficient. In addition, 

inspectors are exposed to a variety of safety risks in the field, especially when using lifting 

equipment. Such equipment is expensive and interrupts traffic. Furthermore, current bridge 

management systems are considered to be inefficient, as they group similar types of elements 

together to report defects and fail to enable visualization of inspection data, which may hinder 

understanding of the underlying reasons for deficiencies of an individual component, especially 

with the increasing amount of information obtained from each bridge inspection. Furthermore, 

such inspections do not provide interoperable solutions throughout the entire bridge life cycle.  

This study developed a novel bridge inspection framework for mitigating the problems 

that have been identified in current bridge inspection and management practices. The framework 
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implements camera-based unmanned aerial systems (UASs), along with computer vision 

algorithms, to collect and process inspection data, and Bridge Information Modeling (BrIM) to 

store and manage all related inspection information. To test the framework’s feasibility and 

efficiency, an illustrative case study was conducted on an existing bridge in Eugene, Oregon, 

using the proposed framework.  

The proposed framework provides bridge data in the form of digital images and 3D 

models in a central database that is simultaneously accessible to all stakeholders via cloud 

computing. The case study results verified the following:  

(1) High-resolution images collected with a UAV enabled visual identification  of 

different types of defects and automatic detection of cracks using computer vision 

algorithms. 

(2) The use of BrIM enabled defect information to be assigned to individual model 

elements and all bridge data to be managed in a single model across the bridge life 

cycle.  

The proposed framework is expected to help transportation agencies \ (1) collect and document 

accurate bridge inspection data; (2) reduce the time and number of site visits and eliminate 

potential errors resulting from data transcription; and (3) conduct a more efficient, cost-effective, 

and safer bridge inspection process. 
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Chapter 1 Introduction 

 The strength and growth of the U.S. economy, as well as the quality of life of all 

Americans, highly depend on the condition of its infrastructure, such as its road network and 

bridges. However, previous studies have indicated that the U.S. infrastructure is aging and that 

its road network and bridges are being poorly maintained for decades. In August 2007, the I-

35W Mississippi River Bridge suddenly collapsed during evening rush hour, resulting in 13 

fatalities and 145 injuries. This bridge was rated as “structurally deficient” by the federal 

government in 1990 because of significant corrosion in its bearings (Mahmoodian et al., 2007). 

Similarly, in May 2013, the I-5 Skagit Bridge near Seattle, Washington, collapsed into the river 

below after being struck by an oversized truck. Three people were seriously injured, and the 

incident affected an average of 71,000 drivers who relied on this bridge to commutedaily. Most 

recently, in March 2018, a pedestrian bridge that connects Florida International University with a 

neighboring city collapsed. Engineers claimed that the collapse was due to a key mistake in the 

design and placement of one of its support towers, and cracks appearing on the bridge did not get 

enough attention, resulting in the deaths of six and injuries to more than a dozen people (Laris 

and Syrluga, 2018). These catastrophes have raised the public’s attention to the condition of the 

nation’s bridges and their maintenance operations. 

1.1 Current Bridge Conditions in the U.S. 

The most recent Infrastructure Report Card released by the American Society of Civil 

Engineers (ASCE) gave the nation’s infrastructure an overall grade of D+ (poor) and its bridges 

a grade of C+ (mediocre). Of the 614,387 bridges in the National Bridge Inventory, 15 percent 

are 40 to 49 years old, and 40 percent are over their 50-year designed life span (figure 1.1). An 

average bridge age of 43 years old indicates that an increasing number of bridges are facing the 
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need for major maintenance or rehabilitation. In addition, 9.1 percent of bridges were classified 

as structurally deficient in 2016 (ASCE, 2017). Structurally deficient bridges are not necessarily 

unsafe or likely to collapse. However, their critical load-carrying elements are in poor condition 

as a result of deterioration or damage, so they need more frequent monitoring to eliminate 

possible and potential collapse. Although the federal government has increased investments to 

fix bridges in recent years and the number of structurally deficient bridges is decreasing, the 

budget available for bridge rehabilitation and repair is limited, and the backlogged budget has 

reached $123 billion (ASCE, 2017). In summary, because of the U.S.’s aging and deteriorating 

road and bridge systems and limited budget, there is an urgent need for an efficient and cost-

effective bridge inspection and management process that can reduce or even prevent structural 

failures. 

 

Figure 1.1 America’s bridges by age (Source: ASCE, 2017) 

 

1.2 Objectives 

The main goal of this study was to provide an accurate, effective, and cost-efficient solution 

for bridge inspection and management. To achieve this goal, a systematic bridge inspection 
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efficiency, and cost-effectiveness. Three specific objectives were identified as integral pieces of 

this study.  

First, to better understand current bridge inspection and data management practices and to 

identify existing problems associated with both inspection and data management stages, the 

Federal Highway Administration’s (FHWA) National Bridge Inspection Standards and Oregon 

Department of Transportation’s (ODOT) Bridge Inspection Program Manual were examined. In 

addition, inspection reports and literature from other related studies were used to identify all issues 

encountered in current bridge inspection and management processes. This process helped us to 

define the problem and gain a better understanding of related issues in a national context. 

Second, the most recent studies on the implementation of a variety of technologies for 

bridge inspections, and management were evaluated to better understand the advantages and 

disadvantages associated with each technology. This helped us to identify the research gap and 

needs. Ultimately, the goal of this project was determined to be development of a more effective 

framework for bridge inspections and management that has practical implications. 

Lastly, this study sought to develop a novel framework using the most suitable technologies 

to improve current bridge inspection and management practices in terms of safety, efficiency, 

duration, and cost. Furthermore, the feasibility and applicability of the proposed framework were 

evaluated by testing the framework on an existing bridge \ and comparing the results with those 

obtained by using traditional methods. The implementation of the proposed framework is expected 

to 1) provide a systematic approach for collecting and accurately documenting structural condition 

assessment data; 2) reduce the number of site visits and eliminate potential errors resulting from 

data transcription; and 3) enable a more efficient, more cost-effective, and safer bridge inspection 

process. 
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1.3 Organization of the Report 

This report is organized as follows: Chapter 2 provides a comprehensive literature review 

on current bridge inspection practices and several advanced technologies that are used for bridge 

inspections. Chapter 3 presents the research methodology by detailing the proposed bridge 

inspection and management framework. Chapter 4 describes the study site and details the data 

collection procedure. Chapter 5 presents the results of the case study described in Chapter 4 and 

evaluates the efficiency of the proposed framework. Chapter 6 provides a discussion on the case 

study results, as well as the limitations of the proposed framework. Chapter 7 draws conclusions 

and discusses future research needs. The organization of the report is schematically outlined in 

figure 1.2. 
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Figure 1.2 Flow chart of report organization 
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Chapter 2 Literature Review 

Bridge inspections are critical for monitoring bridge quality and serviceability, as they 

provide detailed information regarding bridges’ structural stability. However, current visual and 

paper-based bridge inspection practices are considered time consuming, inefficient, and 

expensive. Several studies demonstrated that the use of advanced technologies such as unmanned 

aerial systems (UAS), laser scanners, and Bridge Information Models (BrIM) can help improve 

current bridge inspection practice. This section provides a comprehensive review of the literature 

on studies of advanced technologies for data collection, processing, and management to improve 

current bridge inspection and management practices. In addition, the advantages and 

disadvantages of using these technologies are analyzed, and the gaps between using these 

technologies and current practice are identified. 

2.1 Current Bridge Inspection and Management Practices 

 The AASHTO Manual for Bridge Evaluation (MBE) identifies seven types of 

inspections: initial, routine, damage, in-depth, fracture critical, underwater, and special 

(AASHTO 2011). The inspection frequency and detail level vary depending on the types of 

inspections, as well as bridge conditions. The most common type of inspection, the periodic 

routine inspection, is typically based on visual observation and/or basic measurements to identify 

any bridge defects or changes from previous records. For deficiencies that are not readily 

detectable using routine inspection procedures, unscheduled and more hands-on inspections, 

such in-depth inspections, may be necessary.  

The Federal Highway Administration (FHWA) requires that all states perform biennial 

routine inspections of each bridge (AASHTO 2011) and recommends at least annual inspections 

of bridges rated as structurally deficient (ASCE 2017). The procedures involved in a routine 
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inspection differ significantly depending on the type of bridge, mainly because different defects 

tend to be related to different materials. Concrete cracks, for example, are the primary focus of 

routine inspections of concrete bridges.  

Current basic routine bridge inspections typically use visual and paper-based practices. 

First, a qualified inspector correctly identifies the type, location, and severity of defects on each 

bridge element within arm’s reach following a planned sequence (using an element numbering 

system). Second, the inspector manually records the damage by using checklists, taking notes, 

drawing sketches, and taking photos while on site. Finally, the inspector evaluates all elements 

and documents all data using standard inspection reports, which s/he uploads to the Bridge 

Management System (BMS) after returning to his/her office. The BMS enables bridge engineers 

to access and compare their reports with previous inspection results and identify any 

repair/rehabilitation/maintenance needs.  

Documentation is essential for bridge inspection. The FHWA requires that every bridge 

inspection be accompanied by an inspection report (Ryan et al. 2012). The standard inspection 

report includes evaluations of both national bridge elements (NBEs) and bridge management 

elements (BMEs), which are presented in element condition states (CS) (table 2.1). NBEs are 

bridges’ primary structural elements, such as their superstructures or reinforcement closed box 

girders, while BMEs are elements such as joints and protective systems. Both are necessary to 

determine the overall condition and safety of a bridge’s primary load-carrying members. In 

addition, all defects are grouped and quantified. The severity of each grouped defect is reflected 

by four levels of condition states: good, fair, poor, and severe. On the basis of the element 

condition and a detailed deficiency description, a condition rating, appraisal rating, and load 

rating are calculated to determine the bridge’s serviceability and maintenance needs.  
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Table 2.1 Sample element condition states 

 

 
2.2 Problems Identified in Current Bridge Inspection and Management Practices 

Several shortcomings are associated with current visual and paper-based inspection and 

data management practices. First, inspectors may be exposed to safety risks while performing the 

inspection and evaluation, especially when attempting to reach areas with limited accessibility 

(e.g., the bottom of overwater bridges). Second, equipment used for inspections, such as 

elevating platforms and scaffolding, are expensive and may affect traffic severely as it may 

require lane closures (Hallermann and Morgenthal 2014). Third, because the evaluation of all 

elements is based primarily on the inspector’s judgment, the evaluation process is not objective 

and may be impacted by the inspector’s experience, which may affect the accuracy of the 

inspection results (Bu et al 2014). Fourth, the element-based bridge inspection procedure 

typically takes several days, depending on the size of the bridge. Average bridge inspection costs 

per bridge range between $4,500 and $10,000 (Zulfiqar et al., 2014). The process is time-

consuming, laborious, and costly, especially for large and complex bridges.  

Moreover, given the increasing amount of information generated from different types of 

bridge inspections, current BMSs can be inefficient for several reasons. First, current BMSs do 

not satisfy the growing need to coordinate management of all phases of an entire bridge life cycle 

(Shirolé et al. 2009; Shirolé 2010; Sacks et al., 2018). Many current BMSs contain mainly bridge 
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inventory data and inspection data, which do not provide the information needed for subsequent 

bridge repair/rehabilitation/maintenance work. Other data, such as design data and as-built data, 

are needed to support better decision making (Sacks et al. 2017). Second, current BMSs typically 

focus on databases but not provide direct representation or visualization of the data (Chan et al. 

2016). Third, current database-oriented BMSs group similar types of elements together to report 

defects and provide no direct representation or visualization of inspection data, which may 

hinder understanding of the underlying reasons for deficiencies of an individual component 

(Chan et al., 2016). This becomes worse when different project teams input a large amount of 

inspection data to current BMSs, as key information can be obscured by the low efficiency of 

these systems. This can often prevent engineers from fully understanding how the condition of a 

structure has changed over time (DiBernardo, 2012; Chan et al., 2016) 

This discussion illustrates that there is an urgent need to develop a new bridge inspection 

and management approach that is effective, efficient, and inexpensive. To address the 

weaknesses inherent in current visual bridge inspection processes, previous studies have 

proposed several ideas to implement various new technologies to improve inspection and 

management practices. These are discussed below. 

2.3 Technologies Used for Inspection Data Acquisition and Processing 

Previous studies have proposed methods to improve current bridge inspection processes 

by implementing advanced remote sensing data collection and processing technologies. Remote 

sensing technologies enable data collection with equipment that has no physical contact with the 

target. Remote sensing technologies can be categorized into two groups based on their data 

collection range and purpose, which are determined by the electromagnetic signal, and can detect 

both subsurface and surface defects.    
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2.3.1 Remote Sensing-Based Approaches for Subsurface Defect Detection 

Subsurface defects, such as reinforcement corrosion and concrete delamination, are not 

visible but can directly reduce elements’ structural capacity and be harmful to the entire structure. 

Detecting subsurface defects and measuring their severity are critical tasks for in-depth bridge 

inspections. Ground-penetrating radar (GPR) is a technology that uses high-frequency 

electromagnetic waves to acquire subsurface information by penetrating a surface and detecting 

signals reflected by different buried objects and layers of materials. GPR has been used for 

concrete and masonry bridge inspections, especially for deck condition assessments, and has 

shown  promise for better detecting the size and location of concrete delamination areas on bridge 

decks than visual inspection methods (Shamsudin et al. 2015). However, the principle issue with 

GPR technology is the slow rate of data capture when the evaluation depth is more than 3 inches 

(Ryan et al. 2012). There are two main procedures for analyzing GPR data: a visual method and a 

numerical method. The numerical method typically uses amplitude variations to analyze the 

internal conditions of specific elements. The visual method, on the other hand, is typically based 

on an expert’s assessment of the GPR profiles. Tarussov et al. (2013) evaluated these two methods 

and concluded that the visual method is more accurate than the numerical method, mainly because 

the quantitative method overlooks some important information in the GPR profile, such as changes 

in reinforcing bar spacing and changes in slab thickness. However, the visual method also suffers 

the shortcoming of subjectivity, since the results are highly dependent on the experience and 

judgment of the analyst. 

Infrared (IR) thermography is another remote sensing technology used for detecting 

subsurface defects in bridge inspections and evaluations (Dabous et al., 2017). The basic theory 

behind IR thermography is that the amount of heat conducted through a material will change in 
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the presence of a subsurface defect. Hence, the defects can be identified by using the IR imaging 

of the element based on the change of its surface temperature. Because this technology involves 

collecting and analyzing objects’ radiation and IR energy, temperature differences between 

daytime and nighttime should be considered when the technology is used (Washer et al., 2010). 

During the daytime, sunlight increases the temperature of the bridge surface, while undersurface 

defects maintain a lower temperature. This phenomenon can lead to different results when IR 

thermography is used during the daytime and nighttime. Although IR thermography is easy to use 

and not expensive, its main disadvantage is the accuracy of detection, which can be easily affected 

by different environment conditions (e.g., temperature, sunlight) (Vaghefi et al., 2011).  

    Because of the limitations of the various technologies described above, Dabous et al. (2017) 

suggested integrating GPR and IR thermography to enhance the accuracy and reliability of data 

collection and processing for subsurface delamination detection. Although this approach is 

comprehensive and more objective than traditional bridge inspection practices, its main challenges 

are its limited environment implementation and the need for sufficient technological knowledge 

to interpret the data.   

2.3.2 Remote Sensing-Based Approaches for Surface Defect Detection 

Surface defects such as cracks, spalling, and efflorescence are indicators of possible 

subsurface defects and need to be monitored regularly. Terrestrial laser scanners (TLS), which 

are known for their ability to rapidly obtain accurate information from structures’ surface and 

present this information in the form of three-dimensional (3D), high-density point clouds, have 

also been used for bridge inspections. Truong-Hong et al. (2016) developed a framework that 

utilized TLS technology to inspect bridges for deformation and damage. Their study showed that 

the information provided by TLS is sufficient for bridge condition assessment. However, 
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although TLS can provide high-resolution and accurate output, the resulting large file sizes and 

long data processing times are considered to be two primary barriers to its wider adoption in the 

architectural, engineering and construction, and facilities management (AEC-FM) industry 

(Turkan et al., 2016, Valenca et al., 2017). Turkan et al. (2016) developed a novel adaptive 

wavelet neural network (WNN)-based approach to overcome some of the drawbacks associated 

with using TLS technology for bridge inspections. Their approach detected concrete cracks by 

using an adaptive WNN in low-resolution TLS point clouds, enabling the rapid processing of 3D 

point cloud data and the automatic detection of cracks. However, from an economic perspective, 

TLS is still not considered to be an optimal option. Ravanel and Curtaz (2011) compared TLS 

and photogrammetry technologies and concluded that the cost of TLS without annual 

maintenance fees tended to be approximately six times or more expensive than using 

photogrammetry. 

    Another remote sensing technology that is used to detect surface deteriorations is the 

unmanned aerial system (UAS). Because of the advantages of UASs in terms of safety, cost 

performance, and operability (Liu et al., 2014), it has been well received and tested for a variety 

of applications in the construction industry. With advancements in camera technology, high-

resolution images and videos captured by UASs have been shown to improve jobsite safety by 

providing better visualization of working conditions (de Melo et al., 2017). Images collected by 

UASs regularly, e.g., every week or every other week, enable monitoring changes on a 

construction site and documenting construction progress (Lin et al., 2015). UAS technology has 

received significant attention in the infrastructure inspection field as well. Its remote-control 

features and ability to fly very close to a structure have led to its frequent use on-site to separate 

inspectors from potential workplace hazards (Karakhan et al., 2019). In addition, UASs are 
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considered to have little impact on traffic flow, and they eliminate the costs from utilization of 

expensive lifting platforms used in traditional bridge inspection (Metni et al., 2007). Moreover, 

the high-quality images captured by UASs provide results comparable to those from traditional 

bridge inspections (Otero 2015), especially when identifying concrete spalling, cracks, and 

potential defects in bridge connections (Gillins et al., 2018; Lee et al., 2018). With the help of 

computer vision techniques, Khaloo et al. (2018) reconstructed a 3D model of a bridge in Alaska 

based on images captured by a UAS. This 3D model proved to be very helpful for organizing 

images and locating bridge defects. Another study tested the feasibility of using UASs to detect 

cracks under controlled conditions, both in real-time and during post-processing (Dorafshan et 

al., 2017). Although it is generally accepted that UASs are assistive and useful tools for 

structural inspections, the image quality is sensitive to environmental factors such as lighting 

conditions and winds (Hallermann and Morgenthal, 2014; Morgenthal and Hallermann, 2014).  

2.4 Technologies Used for Inspection Data Acquisition and Processing 

Building Information Modeling (BIM) has revolutionized the AEC-FM industry. BIM is 

widely accepted both as a technology and a process.  From the technology perspective, BIM is 

software that virtually simulates building components by generating a single virtual 3D model, 

which enables all building information and construction documents to be linked to the model 

components (Eastman et al., 2011; Azhar, 2011; Azhar et al., 2015). BIM models are principally 

different from 3D CAD because they are built on object-oriented databases that enable 

simultaneous and automatic updates of changes in building elements across all views (Azhar et 

al., 2015). From a process perspective, BIM has changed the way projects are built by 

encouraging and creating a more collaborative environment for project teams. The majority of 

the projects that implement BIM are delivered with integrated project delivery (IPD) or design-
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build methods, which enable early involvement of all project stakeholders (Eastman et al., 2011). 

BIM also enhances team communication and collaboration by transferring and sharing the BIM 

model among different project parties. This is done through the use of industry foundation 

classes (IFC), a neutral file format that improves the interoperability among different 

applications through the entire project life (Eastman et al., 2011).  

Bridge Information Modeling (BrIM) is a term for BIM when it is used specifically for 

bridge projects. Although some pilot projects have implemented BrIM during the design and 

construction phases, BrIM implementation in existing bridges has been rare mainly because of 

the challenges associated with converting existing 2D, as-built drawings to 3D models (Volk et 

al., 2014). For the majority of the bridges in the United States, the only available as-built 

documentation is still in the form of 2D drawings. Therefore, appropriate modeling software is 

needed to convert 2D, as-built bridge drawings to 3D models. Several commercial software 

products are available, including Tekla Structures and Autodesk Revit, that are capable of 

creating accurate, reliable, and detailed 3D information models (McGuire et al., 2016). These 

platforms are widely used in the industry, as they enable the creation of custom families as well 

as the setting of user-defined parameters. Moreover, their ability to export interoperable IFC 

files, their most beneficial characteristic, enhances their compatibility among non-native file 

types. BrIM has also been considered for implementation in the operations and maintenance 

phases because of its abilities to provide better visualization of and interoperability among the 

structure’s conditions for each component (Azhar et al., 2015; Marzouk and Hisham, 2012). 

DiBernardo (2012) proposed a framework that integrated inspection data with 3D BrIM. 

Following that work, Al-Shalabi et al. (2015) proposed a 3D BrIM-based inspection framework 

that implemented BrIM, mobile devices, and cloud computing. In that framework, mobile 
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devices were used in the field to access and add inspection data (e.g., crack types, sizes, etc.) to 

the bridge elements in the 3D BrIM model with the help of data cloud. This framework was 

tested by Iowa Department of Transportation (DOT) inspectors, who confirmed the potential 

benefits of implementing BrIM for bridge inspections. McGuire et al. (2016) investigated the use 

of BrIM for bridge inspection and evaluation by placing “damage cubes” on the model elements 

to visually represent defect severity. Although it is often noted that BrIM can be used over a 

project’s entire life cycle, only a few studies have implemented BrIM for bridge data 

management (Liu and Issa, 2015). In addition, a gap exists between on-site inspection data 

collection for existing bridges and integration of inspection data with BrIM models for bridge 

management.  

Although previous studies have demonstrated various technologies that can be used to 

improve data collection, processing, and management, no systematic, end-to-end approach has 

been presented. Therefore, this study proposes a novel, systematic bridge inspection framework, 

built on Al-Shalabi et al.’s study (2015) that combines UAS and BrIM technologies. UASs 

enable safer and more rapid collection of bridge images and videos, which can be used for 

automatically detecting cracks or other defects with the help of computer vision algorithms. The 

defect information, such as type and severity, can be then assigned to individual elements in the 

3D BrIM model, which enhances the visualization of the inspection data and eliminates data 

dispersion. All bridge information—including 2D drawings from different phases, integrated 3D 

information models, and all bridge inspection information—is stored in a central, object-oriented 

database, i.e., the BrIM, which can be accessed both from the office and in the field. 
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Chapter 3 Methodology 

The main objective of this study was to develop a novel, systematic approach that 

implemented UAS and BrIM technologies to improve the efficiency of current bridge inspection 

and management practices. Figure 3.1 provides an overview of the proposed framework, which 

has three main phases: 1) development of 3D bridge as-built models; 2) UAS data collection and 

application of computer vision algorithms to the UAS images to detect any defects; 3) integration 

of image processing results into the 3D model, and uploading of the integrated information 

models to the data cloud for future inspections and data management.   

 

Figure 3.1 Proposed Bridge inspection and management framework 
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3.1 Bridge Model Development 

 In this study, Revit was used because of its availability to the research team. Revit is 

widely used in the industry, as it enables the creation of custom families, as well as the setting of 

user-defined parameters. Moreover, its ability to export interoperable IFC files, its most 

beneficial characteristic, enhances compatibility among non-native file types and provides the 

possibility for subsequent steps in the proposed methodology. To help bridge inspectors to adopt 

and use the proposed framework easily, the 3D models were developed at the element level by 

mimicking the traditional inspection method that is based on 2D, as-built plans. The bridge 

model elements were divided into major group types, such as deck, superstructure, and 

substructure, which follows the sequence of traditional bridge inspection. Elements that were not 

found in Revit’s predefined library were created by customizing specific element families. In the 

Revit model, identification (ID) number and material type were provided for each element, 

which was the key to indexing each element, as well as to modifying information of a specific 

element in the IFC file. Revit software also enabled each group to be saved as a single model, 

which could be easily merged back together as a whole later. This functionality reduced the file 

size and made data transfer to and from the data cloud faster and easier.  

3.2 Bridge Model Development 

This phase was divided into three stages, which are schematically shown in figure 3.2. 
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Figure 3.2 Overview of UAS imaging and processing phase 

3.2.1 Flight Planning 

To collect useful images using UASs in a safe and effective manner, it is necessary to first 

formulate a comprehensive imaging plan, which basically includes the design of control 

location(s) and the plan for flight route(s). Control locations are takeoff points, as well as the 

place where the pilot stands, while flight routes are the lines that UASs need to follow. Several 
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factors must be considered when imaging plans are designed: (1) equipment-based factors, (2) 

environment-based factors, and (3) human-based factors.  

Equipment-based factors, such as aircraft size, battery capacity, and control range, 

typically determine how far and how long an aircraft can fly within a safe and visible range for 

the pilot. Familiarity with these factors is fundamental for designing the optimal number of 

control locations and flight routes based on the shape and size of the target bridge.  

Environment-based factors typically reflect weather conditions and obstacles around the 

target bridge. In particular, weather factors such as wind can have a huge impact on the stability 

of the aircraft and the pilot’s level of comfort controlling the UAS, especially for small and low-

weight UASs. Moreover, obstacles such as trees affect the operator’s view and may affect the 

safety of the aircraft. In these situations, it may be necessary to add additional flight-route 

segments and control points.  

Human-based factors have to do with the pilot’s skill and his/her level of comfort 

operating the aircraft. These factors dramatically affect the quality and resolution of the images. 

Although most UASs provide a first-person perspective on the controller, given the variability of 

human-based factors, it is highly recommended that a second viewer observe the flight paths to 

ensure safe operation of the aircraft. 

3.2.2 Image Acquisition 

After choosing appropriate control points and flight routes, images are acquired through a 

two-step approach to obtain images containing all the defects on the target bridge with a sufficient 

level of detail: overall image collection and detailed image collection. Overall image collection is 

important for providing an overall picture of the entire bridge and identifying regions of interest, 

i.e., concrete defects or cracks, for the next step. Intervals along the planned flight path are 
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manually set to collect images with sufficient image overlap. This step is helpful for identifying 

the orientation of the bridge and providing background for later indexing the detailed images. In 

addition, the real-time view displayed on the controller can help identify areas from which to 

collect detailed images. Detailed image collection is performed to gather more details about defects 

of interest that are identified during overall image collection. The images from the overall 

collection are captured farther from the bridge than detailed images, making it difficult to see 

details. Defects such as fine cracks are often visible only from close proximity, which satisfies the 

inspection requirement of arm’s-reach distance.  

3.2.3 Data Processing 

The images collected by the UAS are processed to detect cracks automatically, which 

reduces the time required to manually examine each image. Before this step, the original images 

collected by the UAS are converted to grayscale images. The following steps are then performed 

with MATLAB image processing tools: (1) adjust the intensity values to increase the image 

contrast; (2) apply a median filter to each image to reduce noise; (3) utilize bottom-hat 

morphological operations to extract dark regions from the background; (4) apply threshold 

segmentation to separate cracks from those regions extracted in the previous step, producing 

binary images; and (5) perform morphological area opening to reduce the number of connected 

regions under a certain size and label cracks by using bounding boxes based on region properties. 

These steps are detailed below, and further information can be found in work by Xu and Turkan 

(2019). 

Intensity adjustment is used to increase the contrast of the grayscale image. This operation 

maps the pixel intensity values in the grayscale image to a new values range, which is stretched 

by specifying new lower and upper limits. By default, the intensity adjustment in the MATLAB 
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image processing toolbox saturates the bottom 1 percent and the top 1 percent of all pixel values. 

Median filters are nonlinear operations often used in image processing to reduce “salt and 

pepper” noise and preserve edges. The median filter is an applied window matrix (m-by-n) that 

slides through each pixel 𝑥𝑥 and replaces the pixel by using the median value of the surrounding 

m-by-n neighborhood. MATLAB performs median filtering of the matrix by using a default 

three-by-three neighborhood. Bottom-hat transformations are used to extract dark regions from 

the de-noised gray-level image 𝑓𝑓. Because the gray levels of cracks are usually lower than those 

of other regions, a bottom-hat transformation is applied to extract the structure with lower gray-

level pixels from a bright background. Mathematically, this transformation of image 𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 can be 

expressed as follows (Bai et al., 2012): 

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑓𝑓𝐵𝐵𝐵𝐵 − 𝑓𝑓     (3.1) 

where 𝑓𝑓𝐵𝐵𝐵𝐵 is the new closing image set of structuring element 𝐵𝐵𝐵𝐵, which is dilated 𝐵𝐵 times using 

a morphological dilation operator. The structuring element 𝐵𝐵𝐵𝐵 can be a round, linear, or square 

shape, depending on the shape of the object (the shape of the defect in this case) that is being 

processed.  

Threshold segmentation is used to separate the cracks from the image set (𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵) obtained 

in the previous step. Following the bottom-hat transformation, dark regions are detected as 

objects (defect/crack) and bright pixels are set as the background. However, not all dark regions 

are cracks, and some dark regions that are not cracks are also extracted as objects in the obtained 

image set. It is important to separate cracks from regions with certain gray levels. Otsu (1979) 

proposed a method to find the optimal threshold 𝑇𝑇 to separate pixels into two classes, which can 

be expressed as follows: 

𝜔𝜔𝐵𝐵𝜔𝜔𝑂𝑂(𝜇𝜇𝑂𝑂 − 𝜇𝜇𝐵𝐵)2|𝐵𝐵  = Max
0≤k≤255

 𝜔𝜔𝐵𝐵𝜔𝜔𝑂𝑂(𝜇𝜇𝑂𝑂 − 𝜇𝜇𝐵𝐵)2                                 (3.2) 
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where 𝜔𝜔𝐵𝐵 and 𝜔𝜔𝑂𝑂 denote the background occurrence probability and the objective occurrence 

probability, respectively, and 𝜇𝜇𝐵𝐵 and 𝜇𝜇𝑂𝑂 denote the background mean levels and objective mean 

levels, respectively. Thus, the pixels in the previous image set can be separated into two classes 

using 𝑇𝑇. If the gray level of the pixels in 𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 is higher than 𝑇𝑇, the pixels will be attributed to 

white (replaced with one), and if the gray level is lower than 𝑇𝑇, the pixels will be attributed to 

black (replaced with zero). This step produces a binary image. 

A morphological area opening is used to remove small objects from the binary image. 

Because some small regions or pixels are misidentified as cracks, this operator is used to remove 

connected components with pixels that are under a certain value. Pixel 𝑥𝑥 in the filtered object can 

be expressed as follows (Vincent, 1994):  

𝑓𝑓𝐴𝐴0(𝑥𝑥) =  �
𝑓𝑓𝐵𝐵(𝑥𝑥),   𝑁𝑁𝑥𝑥 ≥ 𝑁𝑁𝑝𝑝
𝐵𝐵𝑛𝑛𝐵𝐵𝑛𝑛,    𝑁𝑁𝑥𝑥 < 𝑁𝑁𝑝𝑝

                                                    (3.3) 

where 𝑓𝑓𝐵𝐵(𝑥𝑥) is pixel 𝑥𝑥 in the connected components after thresholding of the binary image, 𝑁𝑁𝑥𝑥 

denotes the number of pixels (i.e., the area) in those connected components, and  𝑁𝑁𝑝𝑝 denotes the 

pixel number 𝑝𝑝. If the area of the component is larger than 𝑝𝑝, the object is kept; otherwise, it is 

removed. The 𝑝𝑝 value can be set according to the specific situation. The area property of the 

filtered components is used to label the crack region using the smallest possible rectangle 

bounding box. 

3.3 Inspection Data Integration and Management 

The image processing results—information obtained about cracks and other defects (e.g. 

type, orientation, and location) on the bridge—can then be assigned to individual bridge 

elements by modifying the IFC file. Finally, the integrated 3D bridge models, along with 

historical inspection documents and the images captured by the UAS, are uploaded to the 

Autodesk data cloud, which can be accessed from both the office and the jobsite. The severity of 
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each element’s defects can be reflected on the 3D-integrated models with four colors: green 

(good), yellow (fair), orange (poor), and red (severe), just as in a traditional bridge inspection 

report. 
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Chapter 4 Case Study 

To demonstrate the feasibility and efficiency of the proposed framework, an illustrative 

case study was conducted on an existing bridge located in Eugene, Oregon. The primary 

objective of this experiment was to evaluate whether the proposed framework can help improve 

conventional bridge inspection practices by producing accurate results faster and in a more cost-

effective way while enabling better management of bridge data. This section describes the data 

collection procedure and the results of the experiment in detail.  

4.1 Study Site and Equipment 

The bridge selected for this study was located on highway I-105, which spans over the 

Willamette River in Eugene within Lane County, Oregon. This 844-ft-long and 81.17-ft-wide 

concrete bridge was constructed in 1967, so it was past its 50-year design life. The bridge is 

inspected by the Oregon DOT’s Bridge Inspection Program every two years. Mainly because of 

its poor deck condition, it was classified as structurally deficient in the last available inspection 

report. The aircraft used in this study was a DJI Mavic Pro, which was provided by the Oregon 

State University research office. The market price for the selected UAS was around $1,000, 

which was relatively low in comparison to other UASs available on the market. Figure 4.1(a) 

presents an image of the study site captured by the UAS. Table 4.1 lists the specifications of the 

UAS used in this study, which reflect the theoretical parameters (factory settings) of the aircraft. 

The aircraft was controlled with a remote controller, which was connected to an Android phone 

(it would also work with an iPhone). The DJI Mavic Pro application was installed on the phone, 

which provided a real-time view for the pilot operating the UAS. The DJI Mavic Pro application 

enabled adjusting exposure levels when collecting images, which partially reduced the effects of 

illumination issues.  
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Table 4.1 Equipment specifications 

 

4.2 Data Collection 

The UAS was operated on December 1 and 7, 2017, because of good weather conditions, 

without strong winds for the flight. Figure 4.1(b) presents the control points and the flight routes 

that were determined before the data collection. Both the control points and the flight routes were 

determined by taking the equipment-, environment-, and human-based factors into account, 

which were detailed in the framework development section. The battery capacity of the UAS was 

Figure 4.1 (a) The study site, Eugene, OR; (b) Plan for control points and flight routes 
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21 minutes per flight. Nevertheless, each flight was set up to be 15 minutes to reserve sufficient 

time for a safe return. Because of the small size (1.62lbs) of the UAS and the rough and uneven 

plants and trees along the river bank near the bridge, as well as the pilot’s skill level and the 

operational safety, two control points were set along the two sides of the bridge. Furthermore, 

because of the large aspect ratio of the bridge’s structure, flight routes were set along the long 

sides to support optimal image coverage of the bridge.  

Manual flight mode was used for both overall and detailed data collection in this study. 

The overall data collection was performed by flying the aircraft along the flight routes with three 

different view angles: 30o above the deck, perpendicular to the deck, and 30o below the deck (the 

gimballed camera could pitch up to 30o). The distance interval of hovers was manually 

controlled, and the UAS was kept to approximately 15 ft to 20 ft away from the bridge during 

overall imaging. The horizontal distance interval of adjacent hovers was manually controlled at 

around 70 ft based on the basis of the yaw range of the camera. The pilot yawed the camera at 

each hover position to capture high-resolution images with sufficient overlap, and to note regions 

of interest for detailed image collection using the phone’s screen that was connected to the 

remote controller. Following the overall image collection, detailed image collection was 

performed to capture all defects on each element. The pilot flew the aircraft as close as possible 

to the bridge elements and the regions of interest identified during the overall data collection. On 

the basis of the pilot’s skill level, a distance of 5 ft to 6 ft was determined to be both safe and 

sufficiently close to capture necessary details. Then, high-resolution images of bridge elements 

from different angles were captured using the rotating gimballed camera. The collected images 

and videos were stored in the memory card in JPEG and MP4 formats, respectively.   
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Chapter 5 Results 

5.1 UAS Imaging 

During overall image collection, 74 high-resolution images of the bridge were collected. 

The bridge elements containing defects were identified from the overall images visually, and 

more detailed images, a total of 260, containing defects such as cracking, efflorescence, spalling, 

and joint leakage were collected in the next step. Figures 5.1 through 5.3 present some of the 

defects identified from the detailed images. The total flight time per data collection was 

approximately 40 minutes, which was significantly less than the amount of time typically needed 

(several days) to collect data with the traditional inspection methods detailed in the introduction.      

 
(a)                                                                    (b) 

Figure 5.1 (a) Hairline shrinkage cracks on a column; (b) Hairline flexure cracks with 
efflorescence on the sides of boxes 

 
(a)                                                                    (b)                                           

Figure 5.2 (a) Sacking is falling off of a column; (b) Spalling at the bottom of the girder box 
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Figure 5.3 A failed joint seal leaking water 

5.2 Image Processing 

First, all RGB color format images were converted into grayscale images for further 

processing.  The gray scale values were stretched to fill the entire gray-level range (0-255) by 

applying a mean filter to the high-resolution images. Figure 5.4 shows both the original and 

adjusted image histograms of a sample image. The grayscale adjustment resulted in a higher 

contrast, i.e., larger differences of pixel intensity, between the background and the cracks, 

making the cracks darker and the background brighter. However, the crack edges on the concrete 

surface were complex and could contain holes or material deficiencies. Contrast enhancement 

also highlighted these small deficiencies around the cracks. Therefore, the mean filter smoothed 

the gray values of the pixels, which discarded the unnecessary details of material deficiencies 

without affecting the shape and detail of the cracks. Through image enhancement and filtering, 

the contrast between the crack and background became more evident. As shown in figure 5.5, a 

3D representation of the sample image after preprocessing, the gray levels of the crack were 

significantly lower than those of normal regions; therefore, a bottom hat transformation was 

performed to extract these dark regions of interest. However, some dark regions that were not 

cracks were classified in the same group as cracks at the end of the previous step. Therefore, 

threshold segmentation was applied to separate the cracks from those dark regions. However, at 
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the end of this step, some smaller regions and noise still remained in these images that were 

misidentified as cracks, which can be seen in the threshold segmentation image in figure 5.6. 

Therefore, morphological area opening was applied to remove these connected isolated small 

areas that were misidentified as cracks. Finally, the cracks were automatically detected and 

labeled on the images. The workflow used for crack detection is shown in figure 5.6. All of these 

processes were performed automatically on every high-resolution image collected with the UAS 

by coding for loops in MATLAB.  

 

Figure 5.4 The original and adjusted histograms of a sample image 

 

Figure 5.5 3D representation of the sample gray level image 
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Figure 5.6 The processing results of a sample image using the proposed method 

 
The detection results were analyzed by performing a visual comparison with the 

corresponding original images captured by the UAS. In order to validate whether all cracks 

observed visually were detected by the image processing algorithm automatically, precision and 

recall values were calculated and recorded for those 260 detailed, high-resolution images by 

using a 2x2 confusion matrix, which had two classes: Observation and Detection. It is important 

to note again that the purpose of capturing the overall images was to provide a background for 

indexing the detailed images. Therefore, the overall images were not processed in this step, as 

they did not contain the details of the defects/cracks. This is explained in more detail in the next 

chapter.  

Four parameters were recorded for each image pair during visual comparison: 1) true 

positive (TP) represented the number of cracks observed in the original images that are actually 

detected by the algorithm; 2) false negative (FN) represented the number of cracks that were 

observed in original images but were not detected by the algorithm; 3) false positive (FP) 
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represented the number of cracks that were not observed in original images but were detected by 

the algorithm; and 4) true negative (TN) represented the number of cracks that were not observed 

in original images and were not detected by the algorithm. The true negative value was not 

available and was meaningless in this test because the cracks that were not observed in the 

original image were the black areas after detection. Furthermore, this did not affect the analysis 

results because the true negative value was not used for precision or recall calculations. The 

precision and recall values were calculated using TP, FP, and FN as follows: 

𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝐵𝐵 = 𝐵𝐵𝑃𝑃
𝐵𝐵𝑃𝑃+𝐹𝐹𝑃𝑃

× 100%                                                      (5.1) 

𝑅𝑅𝑛𝑛𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐵𝐵𝑃𝑃
𝐵𝐵𝑃𝑃+𝐹𝐹𝐹𝐹

× 100%                                                         (5.2) 

where precision indicates the percentage of recognized cracks by the image processing algorithm 

that were actually observed in the image(s), while recall indicated the percentage of the cracks in 

the images that were actually recognized. A high recall rate would indicate that most cracks in 

the images were recognized, whereas a high precision rate would indicate how well the 

recognition was done without recognizing cracks that were not present in the images. Figure 5.7 

shows an example image in which seven hairline flexure cracks were identified as cracks at the 

end of the image processing step. A visual comparison with the original image showed that all 

but one of the cracks in the image (false positive, labeled in red in figure 5.7(a)) were detected 

correctly. In this example, precision was 85.7 percent and recall was 100 percent, where TP = 6, 

FP = 1, and FN = 0. Precision and recall values were calculated for each pair of images used in 

the analysis, and the average precision value and recall value for the entire image set were 74.6 

percent and 86.2 percent, respectively. The results showed that it was possible to determine the 

type, location, and orientation of defects by examining the detection results and the original 
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images. However, the precision and recall values indicated a need for developing classification 

and machine learning techniques that can improve defect/crack detection accuracy.   

 

Figure 5.7 Crack detection results: (a) Original UAS image; (b) Detected and labeled cracks on 
the UAS image 

5.3 Model Development, Data Integration, and Management 

The procedure for integrating bridge inspection data is shown in figure 5.8. The 2D plans 

were obtained from Oregon DOT. The 3D bridge model was built on the basis of the 2D plans 

using the conceptual mass plug-in for Revit, as it enabled the creation of every bridge element in 

a 3D environment. It is important to note that the Revit software does not support/provide 

custom made elements for bridge design. On the other hand, the conceptual mass plug-in allowed 

the creation of custom families for bridge design, which could be categorized as deck, 

superstructure, and substructure. All families could be grouped together as one project to provide 

a visual representation of the entire bridge. Then the IFC text file that contained all the bridge 

elements could be exported to be used in the next step.  

The IFC file could be opened in Notepad++, and the identified defect information in the 

previous step could be assigned to individual bridge elements by modifying the IFC text file. 

This was done by updating the line that corresponded to a specific bridge element with a string 

containing defect information for this particular element. This information could then be found in 
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the description field for the corresponding element when the IFC file was imported into the BIM 

vision software.   

 

Figure 5.8 Procedure for integrating bridge inspection data 

For data management, BIM 360 Glue was used to store the integrated model containing 

the defect information along with original UAS images and the historical inspection data (figure 

5.9). With this program, different colors could be used to represent different severity levels based 

on the severity of the defect of a specific element, as in traditional inspection reports (figure 5.9). 

BIM 360 Glue would also enable access to the model along with the bridge inspection 

information that could be accessed and updated using mobile devices. This would enable 

effective and real-time communication between on-site personnel, e.g., inspectors and engineers, 

and decision makers in the office regarding inspection data. 
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Figure 5.9 Bridge information management using Autodesk BIM 360 Glue 

5.4 Efficiency Evaluation 

The implementation results were compared with the most recent bridge inspection report 

obtained from ODOT to determine whether the shortcomings associated with current bridge 

inspection practice could be improved by using the proposed inspection framework. A rating 

scale from 1 to 4 was used to evaluate the framework’s usefulness in improving each problem 

related to data collection, processing, and management. In the designated rating system, 1 = not 

useful at all, 2 = useful with limitations, 3 = useful, and 4 = very useful. An evaluation 

corresponding to the inherent problems discussed in the research background section are 

summarized in table 5.1. Note that this evaluation was done by the authors. In future work, a 

nationwide survey will be conducted to obtain feedback from bridge inspectors, engineers, and 

other state DOT personnel. 



36 

Table 5.1 Evaluation of the proposed bridge inspection and management framework 
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Chapter 6 Discussion 

Although the evaluation of the experiment showed that the shortcomings associated with 

the current bridge inspection practice and management could be mitigated by implementing the 

proposed framework, several challenges were associated with its implementation. In particular, 

the experiment enabled identification of two main challenges: crack detection accuracy and 3D 

bridge modeling, which are discussed below in detail.  

6.1 Crack Detection Accuracy 

The accuracy of crack detection is highly affected by how images are collected and 

processed. To detect all defects present on a bridge, full imaging coverage would be necessary. 

This would require both a highly skilled pilot and comprehensive flight route plans, especially 

when data were collecting from more complex bridge structures. Moreover, the experiment also 

revealed issues related to cracks covered by vegetation and dirt. Figure 6.1 shows how cracks 

covered with dirt were hard to see in the original images and are filtered following the threshold 

segmentation. Cleaning bridges before UAS data collection could help overcome this issue but 

would require additional staff and would involve extra costs.  

 

Figure 6.1 (a) Original image; (b) Corresponding binary image 
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Although cracks could be automatically detected by coding for loops in MATLAB, 

obvious edges of bridges and other objects (e.g., rivers) in overall images would affect the crack 

detection results adversely. The image processing algorithms used in this study analyzed the gray 

level of each pixel. However, edges are usually larger and more obvious than cracks. Therefore, 

it would be difficult to detect cracks without also detecting edges using the image processing 

method proposed in this study. For this reason, the detailed images had better crack detection 

results than overall images (detailed images did not contain as many edges and covered smaller 

areas around a defect/crack). This is why only detailed images were used for crack detection, and 

the precision and recall values were calculated by using the results obtained processing those 

detailed images. Figure 6.2 shows an example of crack detection results obtained by processing 

an overall image. In addition to the real cracks, the algorithm also identified the river, as well as 

the edges and railings of the bridge as cracks.  

Perspective projection of the camera also affected the detection results, and to overcome 

this issue, advanced or customized UASs that could provide more accurate measurements of the 

distance between the camera center and target objects are recommended. This would also help 

avoid manual image cropping or parameter changes. To increase the accuracy of crack/defect 

detection, crack characteristics (e.g., shape or size) could be considered when classifier operators 

were developed for crack classification, which would be helpful for separating cracks and crack-

like features, such as the edges and railings in figure 6.2. In addition, machine learning 

algorithms should be considered, as they would enable self-learning of the parameters and the 

features of interest, which would increase the efficiency and accuracy of the detection process. 

However, to obtain accurate results using machine learning algorithms, use of a large set of 

training images and accurate ground truth data would be vital. 
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Figure 6.2 An example of a (a) binary image and (b) labeled cracks on the binary image 

6.2 BrIM for Existing Bridges 

BrIM is more widely adopted for the bridge design and construction phases than for 

bridge operations and maintenance (O&M) and management. The main obstacle limiting 

implementation in those phases for existing bridges has been the ability to create efficient and 

affordable models. Most existing bridges were built in the 20th century, and the available 2D as-

built plans for those bridges contained limited information. Developing accurate BrIM models 

for tens of thousands of bridges based on available information would be difficult and laborious. 

Moreover, unlike designing a bridge, which involves detailed standards concerning levels of 

detail, there are no uniform standards for BrIM modeling for the O&M phase (i.e., as-built BrIM 

that can be used during O&M). This makes managing and sharing models across agencies 

difficult.  

   In this study, the BrIM model was developed in the conceptual mass environment 

within Revit. Although this environment does not provide components unique to bridges, the 

primary bridge elements (National Bridge Elements (NBEs)), which are critical for bridge 

inspection, have been successfully built through the creation of geometric forms. The developed 

BrIM model can be easily enhanced and enriched to support detailed structural assessment if 

infrastructure packages were available in Revit or other platforms. Though the developed BrIM 

model in this study has limited details, it includes major BrIM attributes that could help fill the 
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gap between 2D as-built bridge drawings and comprehensive models for existing bridges. The 

relatively simple process to develop models using conceptual mass, and its attributes for visually 

representing bridges and housing all bridge information in a single model, could increase 

stakeholder’ acceptance of BrIM use for O&M phases. 
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Chapter 7 Conclusions and Recommendations 

7.1 Conclusions 

Bridge inspection is a critical task for providing all Americans with a safe and reliable 

infrastructure. However, current bridge inspection practices are considered inefficient, as they 

are time-consuming, expensive, unsafe, and subjective. In this study, a novel framework was 

proposed to mitigate some of the problems involved in current bridge inspection and 

management practice by implementing BrIM and camera-based UASs. The proposed framework 

was implemented on an existing bridge. A detailed description of imaging plans, data processing 

and analysis, and integration of defect information into the BrIM are provided in the illustrative 

case study. The results obtained from the case study verified that high-resolution images 

captured by a UAS enabled visual identification of different types of defects, and detection of 

cracks automatically using computer vision algorithms. The results also verified that the use of 

BrIM enabled the assignment of defect information on individual model elements to manage all 

bridge data in a single model across the bridge life cycle, has the potential to reduce the number 

of site visits by eliminating data re-entry with the assistance of cloud computing technology. The 

proposed framework showed potential to address some of the problems associated with current 

bridge inspection and management practices in terms of safety, cost-efficiency, and 

effectiveness.  

7.2 Recommendations for Future Work 

A number of limitations in this study need to be noted. First, the proposed framework 

focuses on accelerating the process to find the locations of defects on a given bridge and 

understanding how to integrate this information with bridge information models (at the object 

level) for better inspection data management. The framework does not support automatic 
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measurement of the length and width of cracks and other defects, which is critical in inspection 

work. Second, the framework was evaluated to determine whether the proposed framework could 

solve existing problems in current bridge inspection and management practices. However, it did 

not consider whether those problems are equally important. For example, problems associated 

with subjectivity and safety risks should be prioritized over cost-related issues. Therefore, the 

weighting of different problems could affect the ratings when the framework is evaluated and 

needs to be considered for obtaining a more accurate evaluation. Furthermore, the ratings used in 

the evaluation were assigned by the authors on the basis of the results of the implementation, 

which may not have been accurate because of the authors’ limited experience. In future work, the 

professional opinions of bridge inspectors working for state DOTs will be obtained through a 

nationwide survey to improve the quality and persuasiveness of the evaluation.  

Several other challenges associated with the implementation of this framework in 

practice should be addressed in future work. Recommendations for future work are as follows: 

 Comprehensive UAV flight planning prior to data collection is highly recommended in 

order to provide consistent images and to reduce manual work in subsequent image 

processing, especially when dealing with complex and large-scale bridges. 

 To increase crack detection accuracy, it would be necessary to develop appropriate 

classification operators to separate real cracks from similar features. Machine learning 

algorithms could be used to train the classifier on a large database of images containing 

different types of cracks. 

 To determine the severity of defects/cracks automatically, which would significantly 

enhance the effectiveness of the proposed framework, computer vision-based 

measurement algorithms should also be developed.  
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 The future research should focus on development of more accurate bridge information 

models with detailed parametric information and on identification of model development 

specifications for existing bridges that satisfy stakeholders’ demands. 
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